

AAAV RELIABILITY GROWTH PROJECTIONS

AILEEN G. KELMARTIN - LOGISTICS ENGINEERING DIVISION MANAGER ADVANCED AMPHIBIOUS ASSAULT VEHICLE PROGRAM

AAAV MISSION

Provide High Speed
Transport of Embarked
Marine Infantry From Ships
Located Beyond the Horizon
to Inland Objectives

Provide Armor Protected
Land Mobility and Direct
Fire Support During
Combat Operations

Reconfiguration

Interoperability

* Information Exchange Requirements

KEY PERFORMANCE PARAMETERS

100% of Top

Level *IERs

<u>CRITERIA</u>	THRESHOLD	OBJECTIVE
High Water Speed - Sea State 3, 3' significant wave height, for not less than one continuous hour	20 knots	25 knots
Land Speed - Forward speed on hard surface road	69 kph	72 kph
Firepower - Maximum effective range. Main armament range. Interoperability/ standard ammunition with other service(s)	1500m	2000m
Armor Protection - Any azimuth	14mm/300m	30mm/1000m
Reliability - Mean Time Between Operational Mission Failures	70 hrs	95 hrs
Carrying Capacity	17 Marines	18 Marines

100% of

Critical *IERs

AAAV PROGRAM SCHEDULE

1 October 2002

AAAV Testing Strategy

Production

Readiness and

Low Rate Initia

• IOT&E

Production

Concept Exploration

Hydrodynamic Test Rig

Automotive Test Rig

Program Development and Risk Reduction

- USER Juries
- Combined Arms Exercise
- Force on Force Modeling
- AAAV(C) EOA
- •AAAV(P) EOA

Integrated Functionality

System
Development
and Demonstration

- 9 Vehicles 8 (P) 1 (C)SDD OA
- SDD OA
- Hot Weather
- Cold Weather OA
- RAM-D Testing
- IETM Validation/
 - Verification
- User Juries

Multi-Vehicle Operations Operational Suitability

IOT&E Test to Prove

FUSL

Testing Highlights

- Water Testing 1924 Hours
- Firepower Testing
- Ballistic Hull & Turret Survivability Testing
- C4I Testing
- AAAV (P) and AAAV(C) EOA
- Logistics Demonstration (Training & Maintenance
- IETM Demonstration
- User Juries

Shoot, Communicate, Carry & Protect

Move on Land

Carry

Move on Water

Communicate

Shoot

Protect

IDEALIZED GROWTH CURVE WITH STEPPED RELIABILITY PROJECTIONS

RELIABILITY GROWTH METHODOLOGY

- Idealized Reliability Growth curve established for SDD using AMSAA-Crow model
- Reliability requirements allocated to subsystem level
- Failure events documented in Failure Reporting, Analysis and Corrective Action System (FRACAS)
- Failure Mode Indicators (FMIs) employed to develop failed item Histograms
- Safety, Operational Mission Failures and Trends processed by Failure Prevention Review Board (FPRB)
- Corrective actions approved and scored by FPRB
- Demonstrated and projected reliability recorded on the growth curve

IPT LEVEL GROWTH TRACKING

Suspension Growth Curve

Reliability Drivers	Planned Improvements	Cost	Wgt
•	·	Impact	Impact
Track Impact Performance	New Steel Track development	DEC	INC
HSU Seal Reliable	Enhanced new seal replacement	N/A	N/A
Performance			
HSU Connecting Bar	Increasing the cross section for area & inertia	N/A	Min
Robustness	strength and handling higher loads		inc

Failure Reporting, Analysis and Corrective Action System (FRACAS)

- A closed loop process
 - for the collection for failure event information
 - to support Root Cause Analysis
 - to document corrective actions
- Each Failure Report contains a Failure Mode Indicator (FMI) and Fix Effectiveness Factor (FEF)
- FRACAS reports are the primary source of data for use by the Failure Prevention Review Board

Overall FRACAS Status

Hydraulic Failures Hydraulic Failures

•	FMI	GROUP	Failure Mode	Equipment
•	HYD001	AA	Leak, Interface	Line, Hydraulic
•	HYD002	. AA	Leak, Structural	Line, Hydraulic
•	HYD003	s AA	Chaffing	Line, Hydraulic
•	HYD004	AA	Corrosion	Line, Hydraulic
•	HYD005	i AA	Damaged (I.e. Bent)	Line, Hydraulic
•	HYD006	S AA	Miscellaneous	Line, Hydraulic
•				
•	HYD001	ВВ	Leak, Interface	Hose, Hydraulic
•	HYD002	в ВВ	Leak, Structural	Hose, Hydraulic
•	HYD003	BB	Chaffing	Hose, Hydraulic
•	HYD004	BB	Corrosion	Hose, Hydraulic
•	HYD005	BB	Damaged	Hose, Hydraulic
•	HYD006	BB	Miscellaneous	Hose, Hydraulic

30

Hydraulic FMIs by Incidence

FAILURE PREVENTION & REVIEW BOARD (FPRB)

- Joint System Level Committee Focusing on Root Cause Analysis Process for Test and Evaluation Anomalies
- Primary Members Include System Integrators, Logistics, and the Marine Proponent
- Ability To Redirect Resources & Prioritize Redesign
- Focus
 - Safety Related Anomalies
 - Operational Mission failures
 - Trends
- Currently 400 + Failure Reports Reviewed and Scored By The FPRB
- Assigns Fix Effectiveness Factor (FEF)

Fix Effectiveness Factors for Resolution of Failures

Fix Effectiveness	Qualitative Effect	Effectiveness Criteria
Factor		
1.0	Failure mode eliminated	Component eliminated or S/W changed to prevent problem recurrence.
0.9	Extremely high probability that the underlying failure mode will not reoccur	Extensive RCA methodology and vehicle test data verifies problem resolution.
0.8	High probability that the underlying failure mode will not reoccur	RCA methodology applied along with component test data to verify problem resolution.
0.7	Above average probability that the underlying failure mode will not reoccur	RCA methodology applied along with vendor/test bed data or empirical data (e.g. FEA or materials analysis) to verify the problem resolution.
0.5	Medium probability that the underlying failure mode will not reoccur	Limited RCA methodology applied along with engineering analysis to define the problem resolution.
0.3	Low probability that underlying failure mode will not reoccur	Engineering judgement applied to define the problem resolution.
0.0	No Effect On The Design	 Failure data not captured thereby prohibiting failure analysis, or Failure Mode not repeatable or fix not economical, or Any anomaly that requires no investigation and is not expected to reoccur (e.g. test equipment failure, maintenance induced failure, etc.).

• FEF Exception – An exception to the FEF Criteria is allowable when the proposed fix is intuitively obvious; e.g. keystroke error in written programming code. These recommended FEFs should be documented in the remarks section of the FRACAS reports.

Fix Effectiveness Factors (Subsystem Level)

Reliability Centered Maintenance

- Uncovers failure modes early in the design process
 - Timely design influence
- Provides design change recommendations based on a structured design review process
- Teams consist of those who know the selected equipment the best designers, maintainers, log personnel
- RCM-II Example (Engine)
 - RCM-II identified 204 potential failure modes
 - FRACAS records indicate 92 failure modes
 - Following comparison of actual failure modes to what resulted from the RCM-II process, all but 4 failure modes were documented.
 - Failure modes not yet experienced in test were referred to engineering for analysis and proactive corrections to the design
- Applying to processes as well as products

In Summary

- SDD design focus is driven by test anomalies and Reliability Centered Maintenance findings
- Integrated functionality in PDRR prototypes allows for earlier identification of failure modes
- Reliability Centered Maintenance uncovers failure modes before they happen
- SDD Reliability Growth Program plan includes refurbishment periods to allow for the introduction of corrective actions
- SDD Reliability Growth Projections utilize demonstrated reliability and apply fix effectiveness factors of defined corrective actions

QUESTIONS

AAAV (C)

"State of the Art C4I Architecture"

MISSION

- Provide high speed transport and command and control capability to the embarked Commander and Staff in all operating environments.
- Enable the embarked battalion/regimental commander and his staff members to function as a battalion or regimental tactical echelon command post.

C2 SYSTEMS

- Advanced Field Artillery Tactical Data System
- C2 Personal Computer
- Intelligence Analysis System
- Tactical Combat
- Operations
- •Flexibility for Technology and Software Enhancements

VEHICLE PERFORMANCE

- Crew of 3
- •Mobility, Armor Protection, Same as the AAAV(P)
- •7.62mm, M240 Machine Gun

COMMUNICATION CAPABILITY

- •6-9 Man Staff Capable
- •Single Channel Ground and Air Radio Systems
- Enhanced Precision
- Location Reporting SystemMulti-Mode Multi-Band Radios
- Wireless Voice Intercom
- Migration to Joint Tactical Radio System planned for the future
- Interoperable
- VHF, UHF, HF, UHF (SATCOM) Capable

NAVIGATION SYSTEMS

- Global Positioning System
 Inertial Navigation System
- Digital Compass

TEST, ANALYZE AND FIX (TAAF)

- TAAF process not new used by NASA in the 60s and promoted by U.S. Navy since early 70s
- Elements of a TAAF Program
 - Testing conducted using simulated operational mission and environmental profiles
 - Determines design and manufacturing process weaknesses
 - TAAF process integrated with other development test activity
 - Safety and Operational Mission Failures, as a minimum, are subjected to root cause analysis
 - Corrective actions developed and incorporated into the platform
 - Fix effectiveness is measured